Partitioning Models for Scaling Parallel Sparse Matrix-Matrix Multiplication

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypergraph-Partitioning-Based Decomposition for Parallel Sparse-Matrix Vector Multiplication

ÐIn this work, we show that the standard graph-partitioning-based decomposition of sparse matrices does not reflect the actual communication volume requirement for parallel matrix-vector multiplication. We propose two computational hypergraph models which avoid this crucial deficiency of the graph model. The proposed models reduce the decomposition problem to the well-known hypergraph partition...

متن کامل

Parallel Sparse Matrix Multiplication for Linear Scaling Electronic Structure Calculations

Linear-scaling electronic-structure techniques, also called O(N) techniques, rely heavily on the multiplication of sparse matrices, where the sparsity arises from spatial cut-offs. In order to treat very large systems, the calculations must be run on parallel computers. We analyse the problem of parallelising the multiplication of sparse matrices with the sparsity pattern required by linear-sca...

متن کامل

Simultaneous Input and Output Matrix Partitioning for Outer-Product-Parallel Sparse Matrix-Matrix Multiplication

For outer-product–parallel sparse matrix-matrix multiplication (SpGEMM) of the form C=A×B, we propose three hypergraph models that achieve simultaneous partitioning of input and output matrices without any replication of input data. All three hypergraph models perform conformable one-dimensional (1D) columnwise and 1D rowwise partitioning of the input matrices A and B, respectively. The first h...

متن کامل

Highly Parallel Sparse Matrix-Matrix Multiplication

Generalized sparse matrix-matrix multiplication is a key primitive for many high performance graph algorithms as well as some linear solvers such as multigrid. We present the first parallel algorithms that achieve increasing speedups for an unbounded number of processors. Our algorithms are based on two-dimensional block distribution of sparse matrices where serial sections use a novel hyperspa...

متن کامل

Optimizing Parallel Sparse Matrix-Vector Multiplication by Partitioning

Sparse matrix times vector multiplication is an important kernel in scientific computing. We study how to optimize the performance of this operation in parallel by reducing communication. We review existing approaches and present a new partitioning method for symmetric matrices. Our method is simple and can be implemented using existing software for hypergraph partitioning. Experimental results...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on Parallel Computing

سال: 2018

ISSN: 2329-4949,2329-4957

DOI: 10.1145/3155292